
CS 433 COMPUTER NETWORKS PROJECT REPORT

Anubhav Jain (17110021)
Harshil Jain (17110060)
Rohit Patil (17110126)

Network Communication Paradigm

Client Feature Message to server Server Functions Server Response

 Post Tweet POST
TWEET<SEP>”tweet”

post_tweet()=>
Extracts hashtags
saves
tweet,hashtags,user in
db.tweets

If success:
 TWEET POST
SUCCESS
Else:
 TWEET POST
FAILED

Main feature:
Show my profile

Subfeature:
1 : Delete tweet

PROFILE

1 . {type:DEL

get_tweets() =>gets
tweet from that
particular user from
db.tweets,sends them
as a dictionary dump
object

{ Tweet dictionary }

If success:
 DEL TWEET

2 : Back TWEET,id:tweet_id}

2 . {type:BACK}

del_tweet()=>deletes
tweet from db.tweets

SUCCESS
Else:
 DEL TWEET FAILED

Main feature:
Show User feed

Subfeature:
1: Retweet
2. Back

ALLUSERFEED

1 .
{type:RETWEET,user:
user,tweet:tweet}
2 . {type:BACK}

feed_display() => get
all tweets from
db.tweets and sends to
client as dictionary
dump object

retweet()=> saves the
tweet for given user in
db.tweets

<user list>

If success:
 RETWEET
SUCCESS
Else:
 RETWEET FAILED

Client Feature Message to server Server Functions Server Response

Main feature:

Search Tweets

Subfeatures:
1 : search and retweet
2 : show trending
hashtags

1 . SEARCH TWEETS
<sep>text

To retweet :
{type:RETWEET,user:
user,tweet:tweet}
To get back :
{type:BACK}

2. "TRENDING
HASHTAGS"

search_tweets()

retweet()

get_trending_hashtags
()

{Search results
dictionary}

RETWEET SUCCESS
RETWEET FAILED

Hashtags as list dump

Main feature:
Show followers

Subfeature:
Remove follower

“SHOW FOLLOWERS”

“REMOVE FOL”

show_followers()

unfollow(): removes
user from
corresponding fields in
db

<Followers results list>

--
REMOVE FOLLOWER
SUCCESS
REMOVE FOLLOWER
FAILED

Main feature:
Show followings

Subfeature:
Unfollow user

“SHOW
FOLLOWINGS”

“UNFOL USER”

show_followings()

unfollow(): removes
user from
corresponding fields in

<Followings results
list>

--
REMOVE
FOLLOWING

Explanation

1. Post Tweet: ​The client and server responses and the functions involved for the

“Post Tweet” feature are as follows. The client initially requests to post the tweet to
the server. The client thus sends the message ​POST TWEET<SEP>“tweet” to the
server. The server function involved is the post_tweet() routine which extracts
hashtags, saves the tweets and users in the database. The server finally sends the
message ​TWEET POST SUCCESS if it is successful in storing the tweet in the
database and ​TWEET POST FAILED​ if it is not successful.

2. Show my Profile: The client and server responses and the functions involved for

the “Post Tweet” feature are as follows. This feature is responsible for showing all
the tweets posted by the user till date. The server function involved is get_tweet()
routine which gets the tweets from that particular user from db.tweets and sends
them as a dictionary dump object to the client. The tweets are displayed and then
there is an option to delete the tweet or go back to the previous screen. For deleting
the tweet, the client sends a dictionary to the server of the form ​{type:DEL
TWEET,id:tweet_id} and the function involved is the del_tweet() routine on the

db SUCCESS
REMOVE
FOLLOWING FAILED

Client Feature Message to server Server Functions Server Response

Main feature:
Show all users

Subfeature:
follow / unfollow given
user

SHOW USERS

{type:FOL USER,
username}

{type:UNFOL USER,
username}

show_users(): returns
list of all users except
current with
online/offline status

follow() / unfollow() :
Adds/removes from
corresponding fields in
db

<user list>

FOL SUCCESS
FOL FAILED

UNFOL SUCCESS
UNFOL FAILED

server which looks for that particular tweet_id in the database and deletes it from the
database. It sends a message ​DEL TWEET SUCCESS if it is successfully able to
delete the tweet and ​DEL TWEET FAIL​ otherwise.

3. Show User Feed: The client and server responses and the functions involved for

the “Show User Feed” feature are as follows. The feature shows the tweets
tweeted by the users which the user follows arranged chronologically in
descending order in time. The server function involved is feed_display() which
gets all tweets from db.tweets and sends them to the client as a dictionary dump
object. There are two options available here - retweet and to go back to the
previous screen. For retweeting a tweet, the client sends a dictionary to the
server of the form ​{type:RETWEET,user: user,tweet:tweet} and the function
involved is retweet() routine on the server which saves the tweet for the given
user under the flag RETWEET=True and the user from which it was tweeted. It
sends a message ​RETWEET SUCCESS if it is successfully able to delete the
tweet and ​RETWEET FAIL​ otherwise.

4. Search Tweets: The client and server responses and the functions involved for

the “Search Tweets” feature are as follows. To search a tweet, the client sends
the message to the server of the form ​SEARCH TWEETS<sep> text​. The routine
involved for searching the tweets at the server side is search_tweets() and it
returns the results in the form of a dictionary to the client. There are two
subfeatures available here, retweet and show top 5 trending hashtags. The
retweet functionality works in the same way as discussed above. For showing the
top 5 trending hashtags, the client sends the message ​TRENDING HASHTAGS
to the server and the server uses the get_trending_hashtags() routine to search
all the tweets posted by all users in the database and then find the count of the
hashtags. Finally, the top 5 hashtags based on the count are sent to the client as
a list dump and it displays it to the user.

5. Show Followers: ​The client and server responses and the functions involved for

the “Show Followers” feature are as follows. To search a tweet, the client sends
the message to the server of the form ​SHOW FOLLOWERS. The

show_followers() routine at the server returns the list of followers to the client in
the form of a list. There is an option to remove a follower and the corresponding
message from the client to the server is ​REMOVE FOL which removes the user
from the corresponding fields in the database. The server sends a message
REMOVE FOLLOWER SUCCESS if it is successfully able to remove the
followers and ​REMOVE FOLLOWER FAILED​ otherwise.

6. Show Following: ​The client and server responses and the functions involved for

the “Show Following” feature are as follows. To search a tweet, the client sends
the message to the server of the form ​SHOW FOLLOWING. The
show_followings() routine at the server returns the list of followers to the client in
the form of a list. There is an option to unfollow a user and the corresponding
message from the client to the server is ​UNFOL USER which removes the user
from the corresponding fields in the database. The server sends a message
REMOVE FOLLOWING SUCCESS if it is successfully able to remove the
followers and ​REMOVE FOLLOWING FAILED​ otherwise.

7. Show all users: ​The client and server responses and the functions involved for

the “Show all users” feature are as follows. To show all users, the client sends a
message ​SHOW USERS to the server. The show_users() routine at the server
returns a list of all users except the current user who has loginned with the
online/offline status. The server sends this list as a dump to the client which then
shows it to the user. Here there are two subfeatures: following a user or
unfollowing a user. For following a user the client sends a dictionary of the form
{type:FOL USER, username} to the server and the server routine follow() adds
the corresponding fields in the database and sends the message ​FOL SUCCESS
if successful and ​FOL FAILED otherwise. For UNfollowing a user the client sends
a dictionary of the form ​{type:UNFOL USER, username} to the server and the
server routine follow() removes the corresponding fields in the database and
sends the message ​UNFOL SUCCESS if successful and ​UNFOL FAILED
otherwise.

Finite State Machine for Client/Server

Database Schema

Feature Checklist

Basic Features

✅ Any Client/user is able to register and set up an account with Mini-Tweet.

✅ Client can login, get the updates and logout.

✅ Client can search for registered users, follow/unfollow any users and

 remove followers.

✅ The application supports users to post tweets, and categorize the tweets with

 specific hashtags.

Advanced Features

✅ Hashtags: Users are allowed to search and display tweets under specific

 hashtags. Show the Top 5 trendings hashtags.

✅ Can determine the list of active/online followers/followings.

✅ Retweet: Supporting users to use other users' tweets and post the retweets.

✅ Scaling to a concurrent server that can handle several client requests

 (Multithreading - A new thread is created for each client)

Security Features

✅ Users are able to authenticate with the server before trying to access

 any of the features.

✅ When a user is prompted for a Login password, the user input for the

 password is obscured/masked.

Dependencies

mongodb
mininet
python libraries : mininet, pymongo, stdiomask

Commands

Important instructions:
You have to create a database named ‘minitweet’ in mongodb
To do so:
run the script ​db_initiate.py ​ to add some dummy users and tweets in the database.

To run the application on ubuntu terminal:

python server.py <ip>

python client.py <server_ip>

For example:
Mongodb should be running (use sudo mongod command)
In terminal 1: run

python server.py localhost

In terminal 2: run

python client.py localhost

To run application on mininet

1) Run mininet using -x flag (for Xterm terminals for each hosts)
2) Run mongod on the mininet terminal
3) Run server.py on h1 ‘s xterm terminal
4) Run client.py on h2’s xterm terminal

For example,
mininet -x
mininet > h1 mongod

On h1’s xterm terminal, (h1’s IP is by default 10.0.0.1)
python server.py 10.0.0.1

On h2’s xterm terminal,
python client.py 10.0.0.1

To run application on mininet using python script (Mininet library for python, taking
stdin input for client using .txt files)

In client.py,
(stdiomask library has been used to hide entered password, this library does not work
well with stdin input from .txt files)
Comment lines 52 and 74
Uncomment lines 53,54,75,76

cd testing

sudo python script_exp.py

